Entropy of Stationary Nonequilibrium Measures of Boundary Driven Symmetric Simple Exclusion Processes
نویسندگان
چکیده
منابع مشابه
Entropy of stationary nonequilibrium measures of boundary driven symmetric simple exclusion processes
We examine the entropy of stationary nonequilibrium measures of boundary driven symmetric simple exclusion processes. In contrast with the Gibbs–Shannon entropy [1, 10], the entropy of nonequilibrium stationary states differs from the entropy of local equilibrium states.
متن کاملStationary and Nonequilibrium Fluctuations in Boundary Driven Exclusion Processes
We prove nonequilibrium fluctuations for the boundary driven symmetric simple exclusion process. We deduce from this result the stationary fluctuations.
متن کاملEntropy of non-equilibrium stationary measures of boundary driven TASEP
We examine the entropy of non-equilibrium stationary states of boundary driven totally asymmetric simple exclusion processes. As a consequence, we obtain that the Gibbs-Shannon entropy of the non equilibrium stationary state converges to the GibbsShannon entropy of the local equilibrium state. Moreover, we prove that its fluctuations are Gaussian, except when the mean displacement of particles ...
متن کاملGaussian estimates for symmetric simple exclusion processes
2014 We prove Gaussian tail estimates for the transition probability of n particles evolving as symmetric exclusion processes on Zd, improving results obtained in [9]. We derive from this result a non-equilibrium Boltzmann-Gibbs principle for the symmetric simple exclusion process in dimension 1 starting from a product measure with slowly varying parameter. RÉSUMÉ. 2014 We prove Gaussian tail e...
متن کاملStationary Nonequilibrium States in Boundary Driven Hamiltonian Systems: Shear Flow
We investigate stationary nonequilibrium states of systems of particles moving according to Hamiltonian dynamics with specified potentials. The systems are driven away from equilibrium by Maxwell demon “reflection rules” at the walls. These deterministic rules conserve energy but not phase space volume, and the resulting global dynamics may or may not be time reversible (or even invertible). Us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2010
ISSN: 0022-4715,1572-9613
DOI: 10.1007/s10955-010-0082-x